This page is updated to Aug. 2025
Overview
My full publication list can be seen here: [Google Scholar].
Citations: 49941; H-index: 103
Thompson-Reuters (Clarivate) highly cited researcher
Books and Special Issues:
1. Luo, Z.-Q, Pang, J.-S. and Ralph, D., Mathematical Programs with Equilibrium Constraints, Cambridge University Press, 400 pages, 1996.
2. Luo, Z.-Q. and Pang, J.-S. (Guest Editors), Error Bounds and Their Applications in Mathematical Programming, Mathematical Programming, Series B, 2000.
3. Chiang, M., Low, S., Luo, Z.-Q., Shroff, N. and Yu, W. (Guest Editors), Special issue of IEEE Journal of Selected Areas of Communications on ‘Nonlinear Optimization of Communication Systems’, 2006.
4. Luo, Z.-Q., Gastpar, M., Liu, J. and Swami, A., (Guest Editors), Special issue of IEEE Signal Processing Magazine on ‘Distributed Signal Processing for Sensor Networks’, 2006.
Recent Publications
Journal Publications:
1. Juntao Wang, Feng Yin, Tian Ding, Tsung-Hui Chang, Zhi-Quan Luo, Qi Yan, “ Learning to Gridize: Segment Physical World by Wireless Communication Channel,” in arXiv preprint arXiv:2507.15386, 2025.
2. Dmitry Rybin, Yushun Zhang, Zhi-Quan Luo, “ XX^t Can Be Faster,” in arXiv preprint arXiv:2505.09814, 2025.
3. Yushun Zhang, Dmitry Rybin, Zhi-Quan Luo, “ Finite horizon optimization: Framework and applications,” in arXiv preprint arXiv:2412.21068, 2024.
4. K. Li, Y. Li, L. Cheng and Z. -Q. Luo, “Enhancing Multi-Stream Beamforming Through CQIs for 5G NR FDD Massive MIMO Communications: A Tuning-Free Scheme,” in IEEE Transactions on Wireless Communications, vol. 23, no. 11, pp. 17508-17521, Nov. 2024.
5. S. Zhang, X. Ning, X. Zheng, Q. Shi, T. -H. Chang and Z. -Q. Luo, “A Physics-Based and Data-Driven Approach for Localized Statistical Channel Modeling,” in IEEE Transactions on Wireless Communications, vol. 23, no. 6, pp. 5409-5424, June 2024.
6. K. Li, Y. Li, L. Cheng, Q. Shi and Z. -Q. Luo, “Downlink Channel Covariance Matrix Reconstruction for FDD Massive MIMO Systems With Limited Feedback,” in IEEE Transactions on Signal Processing, vol. 72, pp. 1032-1048, 2024.
7. Qingqing Wu, Beixiong Zheng, Changsheng You, Lipeng Zhu, Kaiming Shen, Xiaodan Shao, Weidong Mei, Boya Di, Hongliang Zhang, Ertugrul Basar, Lingyang Song, Marco Di Renzo, Zhi-Quan Luo, Rui Zhang, “Intelligent Surfaces Empowered Wireless Network: Recent Advances and the Road to 6G,” in Proceedings of the IEEE, 2024.
8. X. Zhao, S. Lu, Q. Shi and Z. -Q. Luo, “Rethinking WMMSE: Can Its Complexity Scale Linearly With the Number of BS Antennas?” in IEEE Transactions on Signal Processing, vol. 71, pp. 433-446, 2023.
9. Y. -B. Zhao and Z. -Q. Luo, “Dynamic Orthogonal Matching Pursuit for Sparse Data Reconstruction,” in IEEE Open Journal of Signal Processing, vol. 4, pp. 242-256, 2023.
10. Zhao, Y., Luo, Z. Improved RIP-based bounds for guaranteed performance of two compressed sensing algorithms. Sci. China Math. 66, 1123–1140 (2023). (no PDF)
11. Zhi-Quan Luo, Xi Zheng, David López-Pérez, Qi Yan, Xin Chen, Nanbin Wang, Qingjiang Shi, Tsung-Hui Chang, Adrian Garcia-Rodriguez, “SRCON: A Data-Driven Network Performance Simulator for Real-World Wireless Networks,” in IEEE Communications Magazine, vol. 61, no. 6, pp. 96-102, June 2023.
12. W. Pu, Y. -F. Liu and Z. -Q. Luo, “Efficient Estimation of Sensor Biases for the 3-D Asynchronous Multi-Sensor System,” in IEEE Transactions on Signal Processing, vol. 71, pp. 2420-2433, 2023.
13. C. Chen, L. Shen, W. Liu and Z. -Q. Luo, “Efficient-Adam: Communication-Efficient Distributed Adam,” in IEEE Transactions on Signal Processing, vol. 71, pp. 3257-3266, 2023.
14. Y. Zhang, K. Shen, S. Ren, X. Li, X. Chen and Z. -Q. Luo, “Configuring Intelligent Reflecting Surface With Performance Guarantees: Optimal Beamforming,” in IEEE Journal of Selected Topics in Signal Processing, vol. 16, no. 5, pp. 967-979, Aug. 2022.
15. J. Zhang and Z. -Q. Luo, “ A global dual error bound and its application to the analysis of linearly constrained nonconvex optimization,” in SIAM Journal on Optimization, vol. 32, no. 3, pp. 2319–2346, 2022.
16. M. Asgarian, G. Mirjalily and Z. -Q. Luo, “Embedding Multicast Service Function Chains in NFV-Enabled Networks,” in IEEE Communications Letters, vol. 25, no. 4, pp. 1264-1268, April 2021.
17. Yeqing Qiu, Chengpiao Huang, Ye Xue, Zhipeng Jiang, Qingjiang Shi, Dong Zhang and Zhi-Quan Luo, “Relaxation-Free Min-k-Partition for PCI Assignment in 5G Networks,” accepted by IEEE Transactions on Signal Processing, 2025.
Conference Papers:
1. Ziniu Li, Tian Xu, Yushun Zhang, Zhihang Lin, Yang Yu, Ruoyu Sun, Zhi-Quan Luo, “ReMax: A Simple, Effective, and Efficient Reinforcement Learning Method for Aligning Large Language Models,” Forty-first International Conference on Machine Learning, 2024.
2. Hao Liang, Zhiquan Luo Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:1774-1782, 2024.
3. Yingru Li, Zhiquan Luo Proceedings of The 27th International Conference on Artificial Intelligence and Statistics, PMLR 238:559-567, 2024.
4. Yingru Li, Jiawei Xu, Zhi-Quan Luo, “Efficient and scalable reinforcement learning via Hypermodel,” NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World, 2023.
5. Jiawei Yao, Fan Xu, Wenhai Lai, Kaiming Shen, Xin Li, Xin Chen, Zhi-Quan Luo, “Blind Beamforming for Multiple Intelligent Reflecting Surfaces,” ICC 2023 - IEEE International Conference on Communications, Rome, Italy, 2023, pp. 871-876.
6. Tian Xu, Ziniu Li, Yang Yu, Zhi-Quan Luo, “Provably Efficient Adversarial Imitation Learning with Unknown Transitions”, Proceedings of the Thirty-Ninth Conference on Uncertainty in Artificial Intelligence, PMLR 216:2367-2378, 2023 (Oral).
7. Hao Liang, Zhi-Quan Luo Proceedings of the 40th International Conference on Machine Learning, PMLR 202:20677-20705, 2023.
8. W. -K. Chen, Y. -F. Liu, R. -J. Zhang, Y. -H. Dai and Z. -Q. Luo, “An Efficient Decomposition Algorithm for Large-Scale Network Slicing,” 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Shanghai, China, 2023, pp. 171-175.
9. Fan Xu, Jiawei Yao, Wenhai Lai, Kaiming Shen, Xin Li, Xin Chen, Zhi-Quan Luo, “Blind Beamforming for Multiple-IRS Assisted Wireless Transmission,” 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Shanghai, China, 2023, pp. 136-140.
10. K. Li, W. Pu and Z. -Q. Luo, “An Exploration-Estimation Beamforming Scheme For 5GNR FDD Massive MIMO Communications,” 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Shanghai, China, 2023, pp. 146-150.
11. K. Li, Y. Li, L. Cheng, Q. Shi and Z. -Q. Luo, “Pushing The Limit of Type I Codebook For FDD Massive MIMO Beamforming: A Channel Covariance Reconstruction Approach,” ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 2021, pp. 4785-4789.
12. Y. Li, K. Li, L. Cheng, Q. Shi and Z. -Q. Luo, “Digital Twin-Aided Learning to Enable Robust Beamforming: Limited Feedback Meets Deep Generative Models,” 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2021, pp. 26-30.
13. K. Li, Y. Li, L. Cheng, Q. Shi and Z. -Q. Luo, “Learning Enhanced Beamforming Vector From CQIs in 5G NR FDD Massive MIMO Systems: A Tuning-free Approach,” 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Lucca, Italy, 2021, pp. 21-25.
14. Yeqing Qiu, Ye Xue, Akang Wang, Yiheng Wang, Qingjiang Shi, Zhi-Quan Luo, “ROS: A GNN-based Relax-Optimize-and-Sample Framework for Max-$k$-Cut Problems,” Proceedings of the 42nd International Conference on Machine Learning, PMLR, 2025.
|